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which can be solved graphically. 
The corresponding eigenfunctions in the interval [0, 1] T(gR 2) will 

be orthogonal with a weight R(1 -- R z) [5], i. e , ,  the following equality 
wii1 be va l id :  

1 

y R ( 1 - -  R ~) T (itn R t) T ([Xm R 2) dR = 
0 

= dF(a . ,  1, P.n) s, , 
d/~ exp -- n = m. (I0) 

Following Grinberg's method [6], we will seek the solution of 
problem (1) with boundary conditions (2), (8), (4) in the form 

where 

Z t~ (Z) T (iti ks), 
t =  dF(at,  1 Itl) exp -- 

�9 i = 0  dR 

(11) 

,1 

j' t(R, Z)R(I--R2)T(It~RDgR. tt(Z) 
0 

Substituting (11) in (1) and using the boundary conditions we ob- 
tain the following ordinary linear deferential equation of the first 
order to determine ti(Z): 

a--z-art + Its2 tz (z) + k~f, (z) = o. (12) 

where 

k i=2i t i  dF(at,  1, ~t) e x p ( - - - - ~ )  
dR 

the solution of which will be 

t i  = exp ( - -  F~ Z) [Ci - -  k~ f ~ (Z) exp (it~ Z) dZ]. (18) 

The constant C i is determined from the boundary condition (4) 

by multiplying this condition by the eigenfunction and integrating 
over the interval [0,i]. For this we need to know the forms of func- 

I N Z H E N E R N O - F I Z I C  H E S K I I  Z H U R N A L  

t iom f(Z) and 9~(R) and for the latter, as a rule, we need to assume 
that it can be expanded as a power series. In particular, when e(R) =- 
---0, f(Z) m f0 =cOnst 

c~=k~ -~. 

We denote the found values of Ci by C~, and then the solution of 
our problem will take the form (11), where t i is given by formula 

0 (18) with C i = C i. 
The problem is solved in exactly the same way with a boundary 

condition of the second kind, i . e . ,  if condition (8) of our problem 
is replaced by the condition 

at  (1, Z) 
OR = f ( z ) '  (14) 

In this case the eigeuvalues will be given by the following system: 

2aF(a+1, 2. t t ) = F ( a ,  1, It), 

a = (2 "it)/4 (15) 

NOTATION 

R -~ r/r  o is the dimensionless variable radius; Z --= z/r0Pe is the 
reduced tube length; Pc = 2Wavr0/a is the Peclet number; r0 is the tube 
radius; r and z are cylindrical coordinates; Wav is the average flow 
velocity; r (a)  is the gamma function; t is the temperature of the liquid. 
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In the thermal potentiometer method of measurement of thermal 
conductivity of metals (Fig. 1) [1], the total heater power may be 
represented in the form 

I[= llel + W~, 

where W l is the power passing through the cross section of the speci- 
men TI; and W 2 is the power scattered by radiation from the specimen 
surface Sp !ocated below the section T 1. 

Similarly 

WI=WS+W,, 

where W4 is the power passing through the specimen cross section T2; 
and W s is the power scattered by radiation from the specimen surface 
located between sections T 1 and T 2. 

For T 1 - TO m 1 ~ Ws is not less than lqo of W, right up to 100- 
150 ~ K. W4 is a quantity of the second order of smallness in compari- 
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Fig. 1. Schematic of the power 
balance in the thermal potenti- 
ometer method of thermal con- 

ductivity measurement, 
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Fig, 2. Temperature dependence of the thermal conductivi- 
ties k, W/cm �9 deg, of several metals and several a11oys. 
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son with W 2, Under these conditions the Fourier formula for the ther- 
mal conductivity is valid: 

~. = nzUa r S ,  (1) 

where 

A T = T I ~ T  ~. 

At higher temperatures it is necessary to take into account the 
quantity W2; according to the Stefan-Boltzmann equation, 

w~ = ~,s, (r~ -- ~ ) ,  (2) 

where T O is the screen temperature. 
Neglecting Wa as before, we obtain, for the thermal conductivity, 

!lY, l Ig/l ~e S 1 (T~ --  r~)l 
) . . . . .  . (a) 

A TS A TS A TS 

The second term in this equation is a correction taking into account 
the power dissipated in radiation. Since e is usually unknown, we need 
to determine the correction experimentally. Taking into account the 
fact that o is constant, that $1, S and l do not change during the ex- 
periment, and that the total emissivity of metals increases linearly 
with temperature as a first approximation (e = e0T ) [2], formula (3) 
may be rewritten as 

z :- ~ , ' -  aT, ( r~ - -  rg) (4) 
,ST 

where 

i ' =  IV l :% Sil 
A T ~ ' ;  A = S " 

If we determine the values of ;k~ and ~ at two different screen 
temperatures Tot and "I't~ and a single specimen heater temperature 
Tl, then, solving the two equations (which were obtained from (4) by 

substitution of To~, XI and Toz, ~ )  with the two unknowns (k and A), 
we find 

( 5 )  
7" 1 [A To(T'~-- T~:) - -  A TI (7~1 - -  T~2)] 

Because we can no longer neglect W 3 as the temperature increases, 
we may expect to find an upper temperature limit for application of 
formula (4). 

We conducted experiments to determine this limit, on good and 
bad heat conductors-copper and 1KhlSl'it0T steel. A deviationof the 
experimental data, as computed from formula (4), from the tabu- 
lated values began for copper from a temperature of 270* K, and for 
steel from 245* K. Of course, the upper temperature limit of appli- 
cation of the present method depends also on the constructional peculi- 
arities of the equipment. Thus, a decrease in the temperature gra- 
dient along the specimen and of the gap between the specimen and 
the screen reduces the value of W s, which shifts the limtt toward 
higher temperatures. 

To measure the thermal conductivity of metals we constructed 
an equipment similar to that described earlier [1]. As a temperature 
sensor in the range 4.2* to 20 ~ K we used a TSG-2 germanium resis- 
tance thermometer. From 20* to 273 ~ K we used a differential copper- 

comtantan thermopile. Intermediate temperatures were achieved 
and maintained by means of the thermal regulator described in [3]. 

Measurement of the thermal condaeltvtt 5, involved measurement 
of the heater power and of the temperatures T~, T2, and To under 
steady thermal conditions. From these data the quantity ).' was cal- 
culated for each temperature point, determined as (T l + T2)/2. 

Determination of A (formula (4)) was carried out as follows. The 
quantity k' = ;~ was measured with a cryostat immersed in liquid 

nitrogen, and the temperature T l maintained close to 273" K. Then 
the nitrogen bath was replaced with an ice bath; then the temperature 
T~ also became close to 273* K. The value of k' measured under 
these conditions was different from k{ and will be denoted by k~, The 
screen temperature and the temperature gradients along the specimen 
were different for these cases and will be denoted by Tot and T~,  and 
AT 1 and AT2, respectively. The information thus obtained was enough 
for calculating A from formula (6), From the calculated value of A 
and the experimentally determined X', the thermal conductivity X 
was determined for each temperature point, from formula (4). 

The advantages of the above method in comparison with other 
existing methods consist, in our opinion, of the following: 

1. The absence of a supplementary heater for the screen. The 
presence of such a heater, although it reduces the nonealculated power 
flux going into radiation, substantially complicates the electrical 
measurement system and increases the time required for thermal 

equilibrium. 
2. The method does not require special treatment of the specimen 

surface to reduce the total emissivity (which lowers the scattered 
power), nor, on the other hand, to increase it (which allows the spe- 
cimen to be regarded as an absolutely black body) 

3. The method does not require supplementary experiment over 
the whole temperature range in order to calculate the radiation. 

In the present work measurements were made of thermal conduc- 
tivity of technically pure niobium and molybdenum, as well as of the 
alloys AD-1, AMG-6, AMG-3, D-16, VT-1, and 1Khl8N10T. The 
results of the measurements are shown in Fig. 2. The error in deter- 
mining the thermal conductivity did not exceed 5o]c over the whole 
temperature range. 

NOTATION 

W is the power; T is the absolute temperature; S is the area of the 
transverse cross section of the specimen; St is the partial surface area 
of the specimen; l is the length; k is the thermal conductivity; 6 is 
the total emissivity of the surface S!; o is the Stefan-Boltzmann con- 
stant. 
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